等辺多角形と代数的整数
今回は次の面白い定理を証明します.
証明には次の事実を用います.
証明.の上のモニック最小多項式を]とすると,の次数はの次数以下であり,またの根の絶対値は全て1なので,三角不等式よりの係数の絶対値は二項係数で上から評価される.よっては有限集合であり,その根であるも有限個の値しかとらない.
定理の証明.一般性を失わず辺の長さを1としてよい.番目,番目の頂点がそれぞれに来るように,多角形を複素平面上に配置する.仮定より番目の頂点はいくつかの1の冪根の和として表され,またである.特にはある円分体の代数的整数である.の作用は複素共役と可換なのでの共役元は全て絶対値が1であり,上の補題よりは1の冪根であることが従う.これが示したいことであった.
整数全体の等差数列への分割に関するMirsky–Newmanの定理
しばらくブログの更新が止まっていてすいません.2018年に入ってから自分の数学の勉強が忙しく,なかなか小ネタを書く時間がありませんでした….ただ書きたいネタ自体はいろいろあるので,ブログは続けていこうと思います.
今回は次の有名な定理を示します.
特にこの定理から,整数全体を公差の相異なる2つ以上の等差数列に分割することは不可能であることがわかります.
よく知られた証明としてはSteinとShakarchiの複素解析の本に載っているものがありますが,最近私は簡単な別証明をひとつ思いついたので,それを以下に紹介します.
まず整数全体をどの等差数列に属するかによって色に塗り分けます.をの十分大きい公倍数とすれば,色のパターンはを周期として繰り返し,また各色はこの周期に3つ以上含まれます.そこでこれら個の色と同じ順に正角形の頂点を塗り分けることで,定理の証明は次の命題に帰着できます.
問題の角形の頂点を複素数平面上のの解全体と同一視します.このとき色の点全体は正角形をなしているので,ちょうど(はなる複素数)の解全体に対応しています.よって次の式が成り立ちます:
ここでかつと仮定すると,上式右辺を展開した式のの係数はですが,左辺のの係数は0なので矛盾しており,これで命題が示されました.
【講演ノート】12点定理
数物セミナー2017冬の談話会@慶應義塾大学にて,「12点定理」について講演しました.以前からずっとブログで紹介したい!と思っていた内容なのですが,ブログに書く時間がないことに気づいたので(最近数学が忙しいのです),講演用に準備した原稿をそのまま置いておきます.
わざわざホモトピーを定義しているのに線積分のホモトピー不変性は説明していなかったり,単連結という用語を無定義で使っていたりと,ツッコミどころ満載ですが,どうか大目に見てください.
内容のざっくりした説明
12点定理は平面上の格子点を結んでできるある種の多角形とその「双対」を考えたとき,それぞれの周上にある格子点の数を足すと必ず12になる,という不思議な定理です.この定理にはたくさんの証明が知られていますが,今回はの考察,普遍被覆への持ち上げ,そしてモジュラー形式を用いてこれを証明します.
リンク
誤植
P.8 の定義式は,正しくは です.
参考文献
実は以下の記事を和訳しただけという説があります.
B. Poonen and F. Rodriguez-Villegas, Lattice polygons and the number 12, Amer. Math. Monthly 107 (2000), 238–250.
【解決編】平面上の凸図形に含まれる多角形の面積
前回の記事で,次のような問題の解答を募集しました.
fibonacci-freak.hatenablog.com
これについてある方からTwitterでリプライをいただき,なんとこの問題は
E. Sasという数学者により1939年に解かれていた
ことが判明しました!(昔の人,すごい!)
そこで,今回はその証明を紹介したいと思います.簡潔な証明なのですぐに終わります.
証明.に含まれる線分のうち距離が最大のものを1つとりとする.問題の内容は相似で不変なのでの長さがであると仮定してよい.となるように座標をとる.の最大性から,はの範囲に入ることに注意する.
各に対しにおけるの最大値をと定める.同様にに対してはの最小値をと定める.するとの境界は
によりパラメータづけできる.このときの面積は
となる.
ここでを1つとり,と定める.を頂点とする角形の面積をとすると,和積の公式より
と表すことができる.よってを無作為にとったときのの期待値は
これはあるが存在してとなることを示しており,主張は示された.
見事な証明とはこのことです.まるで芸術作品のような美しさを感じませんか?
【解答募集】平面上の凸図形に含まれる多角形の面積
追記:解決したので「解決編」を書きました.
fibonacci-freak.hatenablog.com
私は今(2017年12月5日現在),こんな問題を考えています.
たとえばが正六角形の場合,等となります.を大きくしていくとは1に近づくことも推測されます.
今のところ自分で導けた結果は次の2つです.
証明.凸図形に含まれる三角形のうち面積が最大のものを1つ取り,その頂点をとする.これらはの周上にあるとしてよい.を回転させた図形(以下「耳」と呼ぶ)を各辺に貼り付けると,下図のような大きな三角形が得られる.面積の最大性から,はこの三角形に含まれることがわかり,が従う.
さらにのうち3つの耳に含まれる部分の面積を評価する.3つの耳を平行移動して全て重ねた時,と交わっていた部分(図の赤い部分)全てに含まれる点があったとすると,もとの図形の中でそれらはと等しい面積を持つ三角形をなす.ゆえに赤い部分は境界以外では高々2つまでしか交わらないので,赤い部分の面積はの高々2倍であり,の面積はの高々3倍であることがわかる.よって.
証明.凸図形に含まれる四角形のうち面積が最大のものを1つ取り,その頂点をとする.これらはの周上にあるとしてよい.それぞれを通り対角線に平行な直線と,それぞれを通り対角線に平行な直線を描くと,の2倍の面積を持つ平行四辺形が得られる.面積の最大性からはこの平行四辺形に含まれることがわかり,が従う.
(それから一応,という評価も得られたような気になっていますが,証明が複雑なので間違っている気もしています.確証が得られたら追記します.)
しかし正直なことを言うと,さすがにもっと良い評価が得たい!という気持ちでいっぱいです.
そこで,ぜひ優秀な読者の皆さんにも一緒に考えてもらいたい,というわけです.
もし何か新しい結果が得られたら,Twitter(@Asuka_Tsukimi)までご連絡ください!
ご協力をお願いします(*^^*)(*^^*)(*^^*)(*^^*)
格子立方体の一辺の長さとWittの消去定理
格子点(座標が整数の点)を結んでできる図形は面白い問題の源泉です.今回は格子点を結んでできる立方体について考えてみましょう.まず次元の格子立方体を厳密に定義します.
この定義はたとえば2次元なら正方形,3次元なら通常の立方体と一致します. さて,ここで次のような問題を考えます.
まずは2次元の場合を考えてみましょう.三平方の定理より一辺の長さは以上の整数を用いてと表すことができます.逆にこのように表せる実数に対して一辺がの格子正方形が存在することも自明です.よって
であることがわかりました.
3次元の場合は少し難しいですが,体積を考えるとうまくいきます.先ほどと同じように,三平方の定理から辺の長さは正整数の平方根であることがわかります.一方,格子立方体の体積は辺のベクトルを並べた行列の行列式に等しく,辺のベクトルは成分が全て整数なので,体積も当然整数になります.よっては整数であり,が正整数であることがわかりました.逆に任意の整数に対して一辺の長さがの立方体が存在することは自明なので,結局
であることがわかりました. 全く同じ議論から
もわかります.
4次元の場合はさらに面白いことが起こります.そう,4次元にはあの定理があるのです!
4次元立方体の一辺の長さは先ほどと同様に整数の平方根になりますが,逆に任意の正整数に対して一辺の長さがの立方体を構成することができます.実際,上の定理を使ってと表すと,
で張られる格子立方体の一辺の長さはになります.よって
がわかりました.上で構成した立方体の直積を考えれば,より一般に
であることもわかります.
これで残ったのはの場合のみとなりました.の場合の正方形の直積を考えれば
となります.
実はこの包含は等号になります!
証明には対称双線型形式に関するWittの消去定理を使います.
これを使うために,格子立方体を対称双線型形式の言葉に言い換えます.
実は一辺の長さがの有理立方体を与えることはからへの等長同型を与えることと対応します.ここではの標準内積です.この対応はで張られる有理立方体に対し,標準基底をに送る線型写像を対応させることで得られます.
さて,をの元とすると,格子立方体は有理立方体なので,先ほどの対応からとなります.一方ででもあるので,となります.よってWittの消去定理よりがわかり,これはが有理正方形の一辺の長さであることを意味しています!
よって正整数を用いてと表すことができます.両辺を二乗し分母を払うと
となります.ここで次の定理を使います.
とくにこの条件はを平方数で割っても(もちろん割った後が整数なら)変わらないことに注意します.いまは三平方の定理から正整数であることがわかっているので,前の式とEulerの定理よりも平方数の和として表せます.よってがわかりました.
の場合に関する以上の解法は楕円曲線に関する業績で知られるN.Elkiesによるもの(MathOverflowの回答)です.こんな素朴な問題に深い整数論的現象が潜んでいるなんて,とても面白いと思いませんか!
USAMO2008第6問と有限体上の線形代数
USAMO(アメリカ数学オリンピック)の2008年大会では,第6問として次のような問題が出題されました.
これは純粋に組み合わせ論の問題ですが,実は線形代数の知識を使うと見通しよく解くことができます.
解答.数学者にと番号をつける.以下,行列やベクトルは全て上で考える.とが友達であるとき,そうでないときと定め,はの友達の総数を2で割った余りとする.これにより行列が定まる.また,を部屋Aに割り当てるとき,部屋Bに割り当てるときとすると次元ベクトルが定まる.このとき,割り当て方が数学者全員の希望を満たすことは
と同値である.実際左辺の第成分は,が部屋Aにいるときは
であり,が部屋Bにいるときは
なので,これがになることはの希望が満たされることと同値である.よって全員の希望を満たす割り当て方は存在すれば2冪であることがわかった.解の存在を示すには,拡大係数行列
のランクがもとの行列のランクに等しいことを示せば良い.行変形により第行の第列から列までをにできたとすると,実は同じ行の列もになる.実際,行変形としては第行を第行に足すという操作だけ考えればよい.このとき
より
なので第列もになっている.ゆえに拡大係数行列のランクはもとの行列と等しく,解の存在が示された.