フィボナッチ・フリーク

数学の小ネタ集。

Fibonacci Freak

ζ(2,1)=ζ(3)の2通りの証明

今回の登場人物は次の2つの実数です。

\displaystyle\zeta(2,1)=\sum_{m\gt n\gt 0}\frac{1}{m^2n},

\displaystyle\zeta(3)=\sum_{n=0}^\infty\frac{1}{n^3}.

\zeta(3)は有名なAperyの定数という無理数です。一方で\zeta(2,1)の方は初めて見た方も多いかもしれません。これは多重ゼータ値と呼ばれる実数の族のうち最も単純なものです。

さて、冒頭に「2つの実数」と書きましたがこれは厳密には嘘です。というのも、これらは実は同じ値だからです!今回はその証明を2通り紹介したいと思います。

 

証明1. 2つの級数を足すと

\displaystyle\zeta(2,1)+\zeta(3)=\sum_{m\geq n\gt 0}\frac{1}{m^2n}=\sum_{m=1}^\infty\left(\sum_{n=1}^m\frac{1}{n}\right)\frac{1}{m^2}.

ここで

\displaystyle\sum_{n=1}^m\frac{1}{n}=\sum_{n=1}^\infty\left(\frac{1}{n}-\frac{1}{m+n}\right)

と変形できるので

\displaystyle\zeta(2,1)+\zeta(3)=\sum_{m=1}^\infty\sum_{n=1}^\infty\left(\frac{1}{n}-\frac{1}{m+n}\right)\frac{1}{m^2}.\

さらに和の中身は

\displaystyle\left(\frac{1}{n}-\frac{1}{m+n}\right)\frac{1}{m^2}=\frac{1}{mn(m+n)}=\left(\frac{1}{m}+\frac{1}{n}\right)\frac{1}{(m+n)^2}

となるから

\displaystyle\zeta(2,1)+\zeta(3)=\sum_{n=1}^\infty\sum_{m=1}^\infty\left(\frac{1}{m(m+n)^2}+\frac{1}{n(m+n)^2}\right)=2\zeta(2,1).

移項すれば\zeta(2,1)=\zeta(3)を得る。~~~\square

 

証明2. まず-\log(1-t)の展開

\displaystyle\int_0^t\frac{du}{1-u}=-\log(1-t)=\sum_{n=1}^\infty \frac{t^n}{n}

の両辺をtで割って積分すると

\displaystyle\int_0^s\frac{1}{t}\int_0^t\frac{1}{1-u}dudt=\sum_{n=1}^\infty\frac{s^n}{n^2}.

さらに両辺をsで割って積分すると

\displaystyle\int_0^1\frac{1}{s}\int_0^s\frac{1}{t}\int_0^t\frac{1}{1-u}dudtds=\sum_{n=1}^\infty\frac{1}{n^2}\int_0^1 s^{n-1}ds=\zeta(3).

一方最初の式を1-tで割って積分すると

\displaystyle\int_0^s\frac{1}{1-t}\int_0^t\frac{1}{1-u}dudt=\sum_{n=1}^\infty\frac{1}{n}\int_0^s (t^n+t^{n+1}+\cdots) dt=\sum_{m\gt n\gt 0}\frac{s^m}{mn}.

さらに両辺をsで割って積分すると

\displaystyle\int_0^1\frac{1}{s}\int_0^s\frac{1}{1-t}\int_0^t\frac{1}{1-u}dudtds=\sum_{m\gt n\gt 0}\frac{1}{mn}\int_0^1 s^{m-1}ds=\zeta(2,1).

よって示すべき式は

\displaystyle\int_{0\lt u\lt t\lt s\lt 1}\frac{dudtds}{st(1-u)}\overset{?}{=}\int_{0\lt u\lt t\lt s\lt 1}\frac{dudtds}{s(1-t)(1-u)}.

これは(u,t,s)\mapsto(1-s,1-t,1-u)という変数変換により得られるのでよい。~~~\square

 

如何でしたでしょうか。この等式には上にあげた以外にも様々な証明が知られていて、以下の文献にはなんと32通りもの証明が載っています。気になった方はぜひ読んで見てください。

[math/0502034] Thirty-two Goldbach Variations